Oct 14

What is Tidal Energy?

Tidal energy is the power of electricity generation achieved by utilization of the variations in sea level caused primarily by the gravitational effects of the moon, combined with the rotation of the Earth by capturing the energy contained in moving water mass due to tides.

01-Underwater-tidal-power-plant-array-renewable energy projects-renewable energy source

Two types of tidal energy can be extracted:

1. Kinetic Energy: currents between ebbing and surging tides.

2. Potential energy: Difference in height between high and low tides.

In order to be practical for energy production, the height differences needs to be at least 5 meters. Only bays and inlets amplify the height of the tide.

Wave facts:

Waves are caused by a number of forces i.e. wind, gravitational pull from the sun and moon, changes in atmospheric pressure, earthquakes etc. Waves created by wind are the most common waves. Unequal heating of the earth’s surface generates wind and wind blowing over water generates waves.

Types of Tidal Plants

  1. Tidal Fences: Turnstiles built between small islands or between mainland and islands. The turnstiles spin due to tidal currents to generate energy.
  2. Barrage Tidal Plants: Barrage tidal plants are the most common type of tidal plant. Using a dam to trap water in a basin, and when reaches appropriate height due to high tide, release water to flow through turbines that turn an electric generator.
  3. Tidal Turbines: Look like wind turbines, often arrayed in rows but are underwater. Tidal currents spin turbines to create energy.

01-underwater -Tidal-Power-Turbine-array-renewable energy projects

First generation Tidal Power Plants:

  • Tidal Fences
  • Barriage style Tidal Power Plants

Second generation Tidal Power Plants:

  • Tidal Underwater Wind turbines
  • Vertical Axis
  • Horizontal Axis
  • THAWT Device

01- tidal power turbine - renewable energy projects - renewable energy sources

Note:

One site has potential to equal the generating power of three nuclear power plants.

Disadvantages of Second generation Tidal Power Plants:

Presently costly

1. Expensive to build and maintain

2. A 1085 MW facility could cost as much as 1.2 billion dollars to construct and run.

Energy from the Moon:

01-generating electricity from ocean waves

The diagram shows how the gravitational attraction of the moon and sun affect the tides on Earth. The magnitude of this attraction depends on the mass of the object and its distance away. The moon has the greater effect on earth despite having less mass than the sun because it is so much closer. The gravitational force of the moon causes the oceans to bulge along an axis pointing directly at the moon. The rotation of the earth causes the rise and fall of the tides.

When the sun and moon are in line their gravitational attraction on the earth combine and cause a “spring” tide.

When they are as positioned in the first diagram above, 90° from each other, their gravitational attraction each pulls water in different directions, causing a “neap” tide.

The rotational period of the moon is around 4 weeks, while one rotation of the earth takes 24 hours; this results in a tidal cycle of around 12.5 hours. This tidal behaviour is easily predictable and this means that if harnessed, tidal energy could generate power for defined periods of time. These periods of generation could be used to offset generation from other forms such as fossil or nuclear which have environmental consequences. Although this means that supply will never match demand, offsetting harmful forms of generation is an important starting point for renewable energy.

Generating Electricity from the Tide:

Turbines can make electricity when the water turns their blades. The simplest electricity generation system using tides is known as an ebb generating system. It uses a dam, known as a barrage, across an estuary. Sluice gates on the barrage are opened to allow the tide to flow into the estuary on the incoming high tides. They are closed to prevent the water flowing back on the outgoing tide (known as the ebb tide) except through the turbine system.

Two way generation systems, which generate electricity on both the incoming and outgoing tides, are also possible.

Impression of Tidal Turbine Farm:

01-underwater tidal turbine - generating electricity from tides

This form of generation has many advantages over its other tidal energy rivals. The turbines are submerged in the water and are therefore out of sight. They don’t pose a problem for navigation and shipping and require the use of much less material in construction. They are also less harmful to the environment. They function best in areas where the water velocity is 2 – 2.5 m/s. Above this level the turbine experiences heavy structural loads and below this not enough generation takes place.

Types of structures :

  • Monopile,
  • Lattice/gantries,
  • Tripod,
  • Moored

will all have individual responses to loadings Seabed mountings need to be able to withstand applied vertical/horizontal forces and moments.

01-types of structure - underwater tidal turbine

You might also like

Transverse Horizontal Axis Water Turbine | THAWT | Modern Tidal Energy | Most Efficient Wind Turbine
Tidal Energy: Tidal power is one such developing technology, which harnesses the kinetic and gravitational...

The Power Of Foot Steps into Energy | Electricity Produced By The Piezo Electricity Theory | GE New Piezo Electric Charging
A team of college students came together to design a new traffic intersection that transforms the power...

Floating Solar Power Plants | Floating Data Centers | Liquid Solar Arrays (LSA) | New Solar Technologies | Concentrated Photovoltaic Technology
There’s a lot of surface area on this planet for solar panels. The ocean’s are a vast area to utilize...

Solar Thermal Power | Solar Energy | Solar Power | Produce Electricity From Solar Heat
The principles of solar thermal power conversion have been known for more than a century; its commercial...

Tagged with:
preload preload preload